Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Eur J Appl Physiol ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300319

RESUMO

PURPOSE: Electric bikes (EB) are a form of active transportation with demonstrated health benefits. The purpose of this study was to determine the influence of riding an EB for one week on indices of cardiometabolic health in middle-aged adults. METHODS: Adults (n = 22; age = 57.1 ± 11.3 year; BMI = 27.7 ± 4.9) participated in a 2 week study. During Week 1, participants were instructed to continue regular activities. Starting Week 2 participants were provided an EB to ride at least 3 days for a minimum of 30 min·day-1. Physical activity (PA) and glucose were measured continuously. Body composition, blood lipids, glucose, insulin, hemoglobin A1c (HbA1c), plasma endothelin-1 (ET-1), and carotid-femoral pulse wave velocity (cf-PWV) were measured on days 1 and 14.Data and Statistical analyses or Statistics. Each participant served as their own control. Paired t-tests compared dependent variables between week 1 (without EB) and week 2 (with EB). RESULTS: When provided an EB for one week, moderate to vigorous PA increased by 6-9 min·day-1 (P < 0.05) and sedentary time decreased by ~ 77 min·day-1 (P < 0.05). Data from 24 h continuous glucose monitoring showed the percentage of time in healthy range (70-120 mg·dl-1 glucose) increased (P < 0.05) from week 1 to week 2. Compared to day 1, cf-PWV was lower at day 14 (P < 0.05) following one week of riding an EB. CONCLUSION: Moderately-active, middleaged adults showed improved continuous glucose regulation and lower central arterial stiffness following one week of riding an EB.

2.
PM R ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950663

RESUMO

BACKGROUND: Ambulation using standard axillary crutches (SACs) is associated with increased energy expenditure (EE) and decreased ability to perform activities of daily living (ADLs). Using a hands-free crutch (HFC) displays potential for easier completion of ADLs and reduction in energy requirements. OBJECTIVES: To determine if a HFC elicits lower EE and heart rate (HR), improvement in performance of ADLs, and decreased rating of perceived exertion (RPE) compared to common ambulatory devices. DESIGN: A randomized crossover-controlled trial. SETTING: University community. PARTICIPANTS: Twenty healthy college students. MAIN OUTCOME MEASURES: Participants completed a 6-minute walk test at 50 m/min, an ADLs course, and a two-flight stair climb with SACs, HFC, knee scooter (KS), and unassisted ambulation (UA). The order of trial conditions was randomized. EE, HR, time to complete ADLs course and stair climb, and RPE during each condition were obtained. One-way analyses of variance were performed to compare EE, HR response, and RPE between the assistive devices and UA. RESULTS: In all outcomes UA resulted in lower EE, HR, and RPE compared to all the assistive devices (p < .05). For the ADLs course, EE was the same for the three assistive devices, whereas HR was significantly lower for HFC compared to SACs and KS (p < .05). RPE for HFC and KS was lower than SACs (p < .05). For the 6MWT, each device significantly differed from the other devices for EE, HR, and RPE, with KS eliciting the lowest values, followed by HFC. For the stair climbing task, HFC elicited lower EE, HR, and RPE than SACs. Fourteen participants indicated their overall preference for HFCs. CONCLUSIONS: In individuals prescribed weight-bearing restrictions, using a HFC may offer an easier and more preferred alternative to more commonly used SACs during ambulation, stair climbing, and other ADLs.

3.
Aging Cell ; 22(11): e13936, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37486024

RESUMO

Muscle inflammation and fibrosis underlie disuse-related complications and may contribute to impaired muscle recovery in aging. Cellular senescence is an emerging link between inflammation, extracellular matrix (ECM) remodeling and poor muscle recovery after disuse. In rodents, metformin has been shown to prevent cellular senescence/senescent associated secretory phenotype (SASP), inflammation, and fibrosis making it a potentially practical therapeutic solution. Thus, the purpose of this study was to determine in older adults if metformin monotherapy during bed rest could reduce muscle fibrosis and cellular senescence/SASP during the re-ambulation period. A two-arm controlled trial was utilized in healthy male and female older adults (n = 20; BMI: <30, age: 60 years+) randomized into either placebo or metformin treatment during a two-week run-in and 5 days of bedrest followed by metformin withdrawal during 7 days of recovery. We found that metformin-treated individuals had less type-I myofiber atrophy during disuse, reduced pro-inflammatory transcriptional profiles, and lower muscle collagen deposition during recovery. Collagen content and myofiber size corresponded to reduced whole muscle cellular senescence and SASP markers. Moreover, metformin treatment reduced primary muscle resident fibro-adipogenic progenitors (FAPs) senescent markers and promoted a shift in fibroblast fate to be less myofibroblast-like. Together, these results suggest that metformin pre-treatment improved ECM remodeling after disuse in older adults by possibly altering cellular senescence and SASP in skeletal muscle and in FAPs.


Assuntos
Metformina , Masculino , Feminino , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Fenótipo Secretor Associado à Senescência , Senescência Celular/genética , Músculo Esquelético , Inflamação , Caminhada , Colágeno , Fibrose
4.
Am J Physiol Endocrinol Metab ; 325(2): E113-E118, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37315157

RESUMO

Several factors affect muscle protein synthesis (MPS) in the postabsorptive state. Extreme physical inactivity (e.g., bedrest) may reduce basal MPS, whereas walking may augment basal MPS. We hypothesized that outpatients would have a higher postabsorptive MPS than inpatients. To test this hypothesis, we conducted a retrospective analysis. We compared 152 outpatient participants who arrived at the research site the morning of the MPS assessment with 350 Inpatient participants who had an overnight stay in the hospital unit before the MPS assessment the following morning. We used stable isotopic methods and collected vastus lateralis biopsies ∼2 to 3 h apart to assess mixed MPS. MPS was ∼12% higher (P < 0.05) for outpatients than inpatients. Within a subset of participants, we discovered that after instruction to limit activity, outpatients (n = 13) took 800 to 900 steps in the morning to arrive at the unit, seven times more steps than inpatients (n = 12). We concluded that an overnight stay in the hospital as an inpatient is characterized by reduced morning activity and causes a slight but significant reduction in MPS compared with participants studied as outpatients. Researchers should be aware of physical activity status when designing and interpreting MPS results.NEW & NOTEWORTHY The postabsorptive muscle protein synthesis rate is lower in the morning after an overnight inpatient hospital stay compared with an outpatient visit. Although only a minimal amount of steps was conducted by outpatients (∼900), this was enough to increase postabsorptive muscle protein synthesis rate.


Assuntos
Pacientes Internados , Proteínas Musculares , Humanos , Pacientes Ambulatoriais , Estudos Retrospectivos , Biossíntese de Proteínas
5.
Physiol Rev ; 103(4): 2679-2757, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382939

RESUMO

Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.


Assuntos
Músculo Esquelético , Transdução de Sinais , Humanos , Animais , Cães , Músculo Esquelético/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Biossíntese de Proteínas , Hipertrofia/metabolismo , Mamíferos/metabolismo
6.
J Appl Physiol (1985) ; 134(4): 923-932, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861669

RESUMO

Timely and complete recovery of muscle mass and function following a bout of physical disuse are critical components of returning to normal activities of daily living and lifestyle. Proper cross talk between the muscle tissue and myeloid cells (e.g., macrophages) throughout the recovery period from disuse atrophy plays a significant role in the complete resolution of muscle size and function. Chemokine C-C motif ligand 2 (CCL2) has a critical function of recruiting macrophages during the early phase of muscle damage. However, the importance of CCL2 has not been defined in the context of disuse and recovery. Here, we utilized a mouse model of whole body CCL2 deletion (CCL2KO) and subjected them to a period of hindlimb unloading followed by reloading to investigate the importance of CCL2 on the regrowth of muscle following disuse atrophy using ex vivo muscle tests, immunohistochemistry, and fluorescence-activated cell sorting approaches. We show mice that lack CCL2 display an incomplete recovery of gastrocnemius muscle mass, myofiber cross-sectional area, and EDL muscle contractile characteristics during the recovery from disuse atrophy. The soleus and plantaris had limited impact as a result of CCL2 deficiency suggesting a muscle-specific effect. Mice that lack CCL2 have decreased skeletal muscle collagen turnover, which may be related to defects in muscle function and stiffness. In addition, we show that the recruitment of macrophages to gastrocnemius muscle was dramatically reduced in CCL2KO mice during the recovery from disuse atrophy, which likely precipitated poor recovery of muscle size and function and aberrant collagen remodeling.NEW & NOTEWORTHY We provide evidence that the whole body loss of CCL2 in mice has adverse impacts on whole body function and skeletal muscle-specific contractile characteristics and collagen content. These defects in muscle function worsened during the recovery from disuse atrophy and corresponded with decreased recovery of muscle mass. We conclude that the absence of CCL2 decreased recruitment of proinflammatory macrophages to the muscle during the regrowth phase following disuse atrophy resulting in impaired collagen remodeling events and full resolution of muscle morphology and function.


Assuntos
Atrofia Muscular , Transtornos Musculares Atróficos , Camundongos , Animais , Humanos , Atividades Cotidianas , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/fisiologia , Transtornos Musculares Atróficos/patologia , Contração Muscular , Colágeno , Elevação dos Membros Posteriores/fisiologia , Quimiocina CCL2
7.
J Appl Physiol (1985) ; 134(4): 787-798, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36759163

RESUMO

Physical inactivity has many detrimental effects on health, yet the impact of physical inactivity in early life on muscle health in adulthood remains unknown. Early postnatal malnutrition has prolonged effects into adulthood and we propose that early postnatal (P) physical inactivity would have similar negative effects. To test this hypothesis, we exposed postnatal mice (∼P28, C57BL/6J) to 14 days of physical inactivity (shortly after weaning, from ∼P28 to P42 days of age) in the form of muscle disuse with hindlimb unloading (HU). After this early-life physical inactivity, they were allowed to normally ambulate until 5 mo of age (P140, adulthood) when they underwent 14 days of HU with and without 7-day recovery. They were then tested for physical function (grip strength) and muscles were extracted and weighed. Immunofluorescence was carried out on these muscle cross sections for analysis of myofiber cross-sectional area (fCSA), macrophage density (CD68+ cells), and extracellular matrix (ECM) area. Muscle weights and fCSA and myofiber diameter were used to quantify changes in muscle and fiber size. Compared with age-matched controls, no notable effects of early-life physical inactivity (HU) on skeletal muscle and myofiber size were observed. However, a significant reduction in adult grip strength was observed in those exposed to HU early in life. This was associated with reduced muscle macrophages and increased ECM area. Exposure to a short period of early life disuse has negative enduring effects into adulthood impacting grip strength, muscle macrophages, and muscle composition as low muscle quality.NEW & NOTEWORTHY We demonstrate that early life disuse resulted in less grip strength in adulthood. Analysis of muscle composition demonstrated no loss of whole muscle or myofiber size indicating lower muscle quality akin to premature aging. This poor muscle quality was characterized by altered muscle macrophages and extracellular matrix area. We demonstrate intriguing correlations between this loss of grip strength and muscle macrophages and also area of noncontractile tissue in the muscle.


Assuntos
Elevação dos Membros Posteriores , Atrofia Muscular , Camundongos , Animais , Elevação dos Membros Posteriores/fisiologia , Projetos Piloto , Camundongos Endogâmicos C57BL , Músculo Esquelético , Força da Mão
8.
J Appl Physiol (1985) ; 133(4): 919-931, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049060

RESUMO

Poor recovery of muscle size and strength with aging coincides with a dysregulated macrophage response during the early stages of regrowth. Immunomodulation in the form of ex vivo cytokine (macrophage-colony stimulating factor) or polarized macrophage delivery has been demonstrated to improve skeletal muscle regeneration. However, it is unclear if these macrophage-promoting approaches would be effective to improve skeletal muscle recovery following disuse in aged animals. Here, we isolated bone marrow-derived macrophages from donor mice of different ages under various experimental conditions and polarized them into proinflammatory macrophages. Macrophages were delivered intramuscularly into young adult or aged recipient mice during the early recovery period following a period of hindlimb unloading (HU). Delivery of proinflammatory macrophages from donor young adults or aged mice was sufficient to increase muscle function of aged mice during the recovery period. Moreover, proinflammatory macrophages derived from aged donor mice collected during recovery were similarly able to increase muscle function of aged mice following disuse. In addition to the delivery of macrophages, we showed that the intramuscular injection of the cytokine, macrophage-colony stimulating factor, to the muscle of aged mice following HU was able to increase muscle macrophage content and muscle force production during recovery. Together, these results suggest that macrophage immunomodulation approaches in the form of ex vivo proinflammatory macrophage or macrophage-colony stimulating factor delivery during the early recovery phase following disuse atrophy were sufficient to restore the loss of aged skeletal muscle function.NEW & NOTEWORTHY A single intramuscular administration of polarized macrophages into muscles of aged mice following a bout of disuse atrophy was sufficient to improve functional recover similarly to young adults after disuse atrophy regardless of the age or experimental condition of the donor mice. Additionally, intramuscular delivery of macrophage-colony stimulating factor into aged mice was similarly effective. Targeting macrophage function early during the regrowth phase may be a novel tool to bolster muscle recovery in aging.


Assuntos
Atrofia Muscular , Transtornos Musculares Atróficos , Animais , Citocinas , Elevação dos Membros Posteriores/fisiologia , Imunomodulação , Macrófagos/patologia , Camundongos , Músculo Esquelético/fisiologia , Transtornos Musculares Atróficos/patologia
9.
J Fungi (Basel) ; 8(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35736040

RESUMO

This case highlights the use of (1,3)-beta-d glucan to direct treatment of a cervical spinal cord Aspergillus fumigatus infection in a 22-year-old woman immunocompromised due to steroid and anti-TNF therapy in the context of ulcerative colitis and interferon gamma deficiency. A 4-year treatment course requiring neurosurgical intervention on four occasions and prolonged antifungal therapy, including isavuconazole, resulted in clinical cure with a corresponding decrease in CSF beta-d-glucan to <30 pg/mL. Serum and CSF galactomannan levels were not elevated at any point during the clinical course.

11.
FASEB J ; 35(9): e21862, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34416035

RESUMO

Loss of muscle mass and strength after disuse followed by impaired muscle recovery commonly occurs with aging. Metformin (MET) and leucine (LEU) individually have shown positive effects in skeletal muscle during atrophy conditions but have not been evaluated in combination nor tested as a remedy to enhance muscle recovery following disuse atrophy in aging. The purpose of this study was to determine if a dual treatment of metformin and leucine (MET + LEU) would prevent disuse-induced atrophy and/or promote muscle recovery in aged mice and if these muscle responses correspond to changes in satellite cells and collagen remodeling. Aged mice (22-24 months) underwent 14 days of hindlimb unloading (HU) followed by 7 or 14 days of reloading (7 or 14 days RL). MET, LEU, or MET + LEU was administered via drinking water and were compared to Vehicle (standard drinking water) and ambulatory baseline. We observed that during HU, MET + LEU resolved whole body grip strength and soleus muscle specific force decrements caused by HU. Gastrocnemius satellite cell abundance was increased with MET + LEU treatment but did not alter muscle size during disuse or recovery conditions. Moreover, MET + LEU treatment alleviated gastrocnemius collagen accumulation caused by HU and increased collagen turnover during 7 and 14 days RL driven by a decrease in collagen IV content. Transcriptional pathway analysis revealed that MET + LEU altered muscle hallmark pathways related to inflammation and myogenesis during HU. Together, the dual treatment of MET and LEU was able to increase muscle function, satellite cell content, and reduce collagen accumulation, thus improving muscle quality during disuse and recovery in aging.


Assuntos
Envelhecimento , Colágeno/metabolismo , Leucina/uso terapêutico , Metformina/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Fibrose/tratamento farmacológico , Elevação dos Membros Posteriores , Imunoglobulina G/análise , Leucina/farmacologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Tamanho do Órgão/efeitos dos fármacos , RNA-Seq , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/patologia , Transdução de Sinais/efeitos dos fármacos
12.
Nutr Metab (Lond) ; 18(1): 61, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118944

RESUMO

BACKGROUND: Previous work in HEK-293 cells demonstrated the importance of amino acid-induced mTORC1 translocation to the lysosomal surface for stimulating mTORC1 kinase activity and protein synthesis. This study tested the conservation of this amino acid sensing mechanism in human skeletal muscle by treating subjects with chloroquine-a lysosomotropic agent that induces in vitro and in vivo lysosome dysfunction. METHODS: mTORC1 signaling and muscle protein synthesis (MPS) were determined in vivo in a randomized controlled trial of 14 subjects (10 M, 4 F; 26 ± 4 year) that ingested 10 g of essential amino acids (EAA) after receiving 750 mg of chloroquine (CHQ, n = 7) or serving as controls (CON, n = 7; no chloroquine). Additionally, differentiated C2C12 cells were used to assess mTORC1 signaling and myotube protein synthesis (MyPS) in the presence and absence of leucine and the lysosomotropic agent chloroquine. RESULTS: mTORC1, S6K1, 4E-BP1 and rpS6 phosphorylation increased in both CON and CHQ 1 h post EAA ingestion (P < 0.05). MPS increased similarly in both groups (CON, P = 0.06; CHQ, P < 0.05). In contrast, in C2C12 cells, 1 mM leucine increased mTORC1 and S6K1 phosphorylation (P < 0.05), which was inhibited by 2 mg/ml chloroquine. Chloroquine (2 mg/ml) was sufficient to disrupt mTORC1 signaling, and MyPS. CONCLUSIONS: Chloroquine did not inhibit amino acid-induced activation of mTORC1 signaling and skeletal MPS in humans as it does in C2C12 muscle cells. Therefore, different in vivo experimental approaches are required for confirming the precise role of the lysosome and amino acid sensing in human skeletal muscle. Trial registration NCT00891696. Registered 29 April 2009.

13.
Nutrients ; 13(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668674

RESUMO

Cheddar cheese is a protein-dense whole food and high in leucine content. However, no information is known about the acute blood amino acid kinetics and protein anabolic effects in skeletal muscle in healthy adults. Therefore, we conducted a crossover study in which men and women (n = 24; ~27 years, ~23 kg/m2) consumed cheese (20 g protein) or an isonitrogenous amount of milk. Blood and skeletal muscle biopsies were taken before and during the post absorptive period following ingestion. We evaluated circulating essential and non-essential amino acids, insulin, and free fatty acids and examined skeletal muscle anabolism by mTORC1 cellular localization, intracellular signaling, and ribosomal profiling. We found that cheese ingestion had a slower yet more sustained branched-chain amino acid circulation appearance over the postprandial period peaking at ~120 min. Cheese also modestly stimulated mTORC1 signaling and increased membrane localization. Using ribosomal profiling we found that, though both milk and cheese stimulated a muscle anabolic program associated with mTORC1 signaling that was more evident with milk, mTORC1 signaling persisted with cheese while also inducing a lower insulinogenic response. We conclude that Cheddar cheese induced a sustained blood amino acid and moderate muscle mTORC1 response yet had a lower glycemic profile compared to milk.


Assuntos
Aminoácidos/sangue , Queijo , Ingestão de Alimentos/fisiologia , Músculo Esquelético/metabolismo , Adulto , Animais , Biópsia , Estudos Cross-Over , Ácidos Graxos não Esterificados/sangue , Feminino , Voluntários Saudáveis , Humanos , Insulina/sangue , Leucina/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Leite/metabolismo , Período Pós-Prandial , Ribossomos/metabolismo , Transdução de Sinais
14.
Am J Physiol Cell Physiol ; 320(4): C566-C576, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406027

RESUMO

Muscle progenitor cells (MPCs) in aged muscle exhibit impaired activation into proliferating myoblasts, thereby impairing fusion and changes in secreted factors. The antihyperglycemic drug metformin, currently studied as a candidate antiaging therapy, may have potential to promote function of aged MPCs. We evaluated the impact of 2 wk of metformin ingestion on primary myoblast function measured in vitro after being extracted from muscle biopsies of older adult participants. MPCs were isolated from muscle biopsies of community-dwelling older (4 male/4 female, ∼69 yr) adult participants before (pre) and after (post) the metformin ingestion period and studied in vitro. Cells were extracted from Young participants (4 male/4 female, ∼27 yr) to serve as a "youthful" comparator. MPCs from Old subjects had lower fusion index and myoblast-endothelial cell homing compared with Young, while Old MPCs, extracted after short-term metformin ingestion, performed better at both tasks. Transcriptomic analyses of Old MPCs (vs. Young) revealed decreased histone expression and increased myogenic pathway activity, yet this phenotype was partially restored by metformin. However, metformin ingestion exacerbated pathways related to inflammation signaling. Together, this study demonstrated that 2 wk of metformin ingestion induced persistent effects on Old MPCs that improved function in vitro and altered their transcriptional signature including histone and chromatin remodeling.


Assuntos
Envelhecimento Saudável , Hipoglicemiantes/administração & dosagem , Metformina/administração & dosagem , Mioblastos Esqueléticos/efeitos dos fármacos , Adulto , Fatores Etários , Idoso , Comunicação Celular , Fusão Celular , Movimento Celular , Células Cultivadas , Técnicas de Cocultura , Esquema de Medicação , Células Endoteliais/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Mioblastos Esqueléticos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transcriptoma/efeitos dos fármacos
15.
J Appl Physiol (1985) ; 130(3): 537-544, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356986

RESUMO

Physical inactivity influences the development of muscle insulin resistance yet is far less understood than diet-induced muscle insulin resistance. Progress in understanding the mechanisms of physical inactivity-induced insulin resistance is limited by a lack of an appropriate preclinical model of muscle insulin resistance. Here, we discuss differences between diet and physical inactivity-induced insulin resistance, the advantages and disadvantages of the available rodent inactivity models to study insulin resistance, and our current understanding of the mechanisms of muscle insulin resistance derived from such preclinical inactivity designs. The burgeoning rise of health complications emanating from metabolic disease presents an alarming issue with mounting costs for health care and a reduced quality of life. There exists a pressing need for more complete understanding of mechanisms behind the development and progression of metabolic dysfunction. Since lifestyle modifications such as poor diet and lack of physical activity are primary catalysts of metabolic dysfunction, rodent models have been formed to explore mechanisms behind these issues. Particularly, the use of a high-fat diet has been pervasive and has been an instrumental model to gain insight into mechanisms underlying diet-induced insulin resistance (IR). However, physical inactivity (and to some extent muscle disuse) is an often overlooked and much less frequently studied lifestyle modification, which some have contended is the primary contributor in the initial development of muscle IR. In this mini-review we highlight some of the key differences between diet- and physical inactivity-induced development of muscle IR and propose reasons for the sparse volume of academic research into physical inactivity-induced IR including infrequent use of clearly translatable rodent physical inactivity models.


Assuntos
Resistência à Insulina , Animais , Insulina , Músculo Esquelético , Qualidade de Vida , Roedores , Comportamento Sedentário
17.
Appl Physiol Nutr Metab ; 45(11): 1261-1269, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32470312

RESUMO

With this cohort, we previously demonstrated preservation of thigh lean tissue with neuromuscular electrical stimulation combined with protein supplementation (NMES+PRO) treatment during bed rest in healthy older adults. Because macrophage polarization plays a significant role in the repair and maintenance of muscle size and insulin sensitivity, we hypothesized that muscle macrophages would be induced by NMES+PRO and would correspond to an increase in lean mass and an attenuated insulin resistance response altered by bed rest. Older adults (60-80 years old; body mass index < 30 kg/m2) underwent 5 days of bed rest and were randomized to either thrice daily treatment of NMES+PRO (n = 8) or CON (n = 8). Lean mass, insulin sensitivity, and markers of muscle macrophages, inflammation, and connective tissue were determined before and after bed rest. Glucose intolerance and insulin resistance occurred after bed rest but there was not a treatment effect (p > 0.10). Proinflammatory-like macrophages (CD11b+, CD206-) increased (p < 0.05) with NMES+PRO treatment and was different than CON. Minor changes in noncontractile tissue were observed. However, changes in muscle macrophages or extracellular matrix were not related to the preservation of thigh lean mass or insulin resistance. Daily NMES+PRO treatment during bed rest induced a muscle proinflammatory-like macrophage response and was unrelated to muscle size or metabolic function. This study is listed as clinical trial NCT02566590. Novelty Neuromuscular electrical stimulation combined with protein supplementation (NMES+PRO) increased proinflammatory-like macrophages and extracellular matrix content in older adults after bed rest. NMES+PRO changes in macrophages and noncontractile tissue macrophages were not related to muscle size preservation or insulin sensitivity.


Assuntos
Repouso em Cama , Proteínas Alimentares/administração & dosagem , Terapia por Estimulação Elétrica , Resistência à Insulina , Macrófagos/citologia , Músculo Esquelético , Idoso , Idoso de 80 Anos ou mais , Suplementos Nutricionais , Humanos , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Tamanho do Órgão , Utah
18.
J Gerontol A Biol Sci Med Sci ; 75(9): 1663-1670, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32215553

RESUMO

Acute bed rest places older adults at risk for health complications by disrupting homeostasis in many organ systems, including the cardiovascular system. Circulating ceramides are emerging biomarkers predictive of cardiovascular and metabolic health and have recently been shown to be sensitive indices of cardiovascular (CV) risk. Therefore, the purpose of this study was to characterize the time course of changes in circulating ceramides in healthy younger and older adults after 5 days of bed rest and to determine whether short-term bed rest alters CV-related circulating ceramides. We hypothesized that circulating ceramides predictive of poor cardiometabolic outcomes would increase following 5 days of bed rest. Thirty-five healthy younger and older men and women (young: n = 13, old: n = 22) underwent 5 days of controlled bed rest. Fasting blood samples collected daily during the course of bed rest were used to measure circulating ceramides, lipoproteins, adiponectin, and fibroblast growth factor 21 (FGF21) levels. The primary findings were that circulating ceramides decreased while ceramide ratios and the cardiac event risk test 1 score were increased primarily in older adults, and these findings were independent of changes in circulating lipoprotein levels. Additionally, we found that changes in circulating adiponectin, FGF21 and the 6-minute walk test (6MW) inversely correlated with CV-related circulating ceramides after bed rest. The results of this study highlight the sensitivity of circulating ceramides to detect potential CV dysfunction that may occur with acute physical disuse in aging.


Assuntos
Repouso em Cama/efeitos adversos , Doenças Cardiovasculares/etiologia , Ceramidas/sangue , Adiponectina/sangue , Fatores Etários , Idoso , Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Dieta , Feminino , Fatores de Crescimento de Fibroblastos/sangue , Humanos , Resistência à Insulina , Masculino , Fatores de Risco , Adulto Jovem
19.
Obesity (Silver Spring) ; 28(4): 772-782, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32108446

RESUMO

OBJECTIVE: Inactivity and inflammation are linked to obesity and insulin resistance. It was hypothesized that MyD88 (mediates inflammation) knockout from muscle (MusMyD88-/- ) would prevent, whereas miR146a-/- (MyD88 inhibitor) would exacerbate, inactivity-induced metabolic disturbances. METHODS: Cre-control, MusMyD88-/- , and miR146a-/- mice were given running wheels for 5 weeks to model an active phenotype. Afterward, half were placed into a small mouse cage (SMC) to restrict movement for 8 days. Body composition, muscle (3 H)2-deoxyglucose uptake, visceral fat histology, and tissue weight (hind limb muscles, visceral fat, and liver) were assessed. In skeletal muscle and visceral fat, RNA sequencing and mitochondrial function were performed on female MusMyD88-/- and Cre-control SMC mice. RESULTS: The SMC induced adiposity, hyperinsulinemia, and muscle insulin-stimulated glucose uptake, which was worsened in miR146a-/- mice. In females, MusMyD88-/- mice were protected. Female MusMyD88-/- mice during the SMC period (vs. Cre-control) exhibited higher Igf1 and decreased Ip6k3 and Trim63 muscle expression. Visceral fat transcript changes corresponded to improved lipid metabolism, decreased adipose expansion (Gulp1↑, Anxa2↓, Ehd1↓) and meta-inflammation (Hmox1↓), and increased beiging (Fgf10↑). Ralgapa2, negative regulator of GLUT4 translocation, and inflammation-related gene 993011J21Rik2 were decreased in both muscle and fat. CONCLUSIONS: Whole-body miR146a-/- exacerbated inactivity-induced fat gain and muscle insulin resistance, whereas MusMyD88-/- prevented insulin resistance in female mice.


Assuntos
Adiposidade/genética , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
20.
Int J Mol Sci ; 21(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098447

RESUMO

: Intramuscular lipid accumulation has been associated with insulin resistance (IR), aging, diabetes, dyslipidemia, and obesity. A substantial body of evidence has implicated ceramides, a sphingolipid intermediate, as potent antagonists of insulin action that drive insulin resistance. Indeed, genetic mouse studies that lower ceramides are potently insulin sensitizing. Surprisingly less is known about how physical activity (skeletal muscle contraction) regulates ceramides, especially in light that muscle contraction regulates insulin sensitivity. The purpose of this review is to critically evaluate studies (rodent and human) concerning the relationship between skeletal muscle ceramides and IR in response to increased physical activity. Our review of the literature indicates that chronic exercise reduces ceramide levels in individuals with obesity, diabetes, or hyperlipidemia. However, metabolically healthy individuals engaged in increased physical activity can improve insulin sensitivity independent of changes in skeletal muscle ceramide content. Herein we discuss these studies and provide context regarding the technical limitations (e.g., difficulty assessing the myriad ceramide species, the challenge of obtaining information on subcellular compartmentalization, and the paucity of flux measurements) and a lack of mechanistic studies that prevent a more sophisticated assessment of the ceramide pathway during increased contractile activity that lead to divergences in skeletal muscle insulin sensitivity.


Assuntos
Envelhecimento/fisiologia , Ceramidas/metabolismo , Exercício Físico/fisiologia , Resistência à Insulina/fisiologia , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Humanos , Camundongos , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...